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A basic property of life is its capacity to experience Darwinian
evolution. The replicator concept is at the core of genetics-first
theories of the origin of life, which suggest that self-replicating
oligonucleotides or their similar ancestors may have been the first
“living” systems and may have led to the evolution of an RNA
world. But problems with the nonenzymatic synthesis of biopol-
ymers and the origin of template replication have spurred the
alternative metabolism-first scenario, where self-reproducing
and evolving proto-metabolic networks are assumed to have pre-
dated self-replicating genes. Recent theoretical work shows that
“compositional genomes” (i.e., the counts of different molecular
species in an assembly) are able to propagate compositional infor-
mation and can provide a setup on which natural selection acts.
Accordingly, if we stick to the notion of replicator as an entity that
passes on its structure largely intact in successive replications,
those macromolecular aggregates could be dubbed “ensemble
replicators” (composomes) and quite different from the more
familiar genes and memes. In sharp contrast with template-
dependent replication dynamics, we demonstrate here that repli-
cation of compositional information is so inaccurate that fitter
compositional genomes cannot be maintained by selection and,
therefore, the system lacks evolvability (i.e., it cannot substantially
depart from the asymptotic steady-state solution already built-in
in the dynamical equations). We conclude that this fundamental
limitation of ensemble replicators cautions against metabolism-
first theories of the origin of life, although ancient metabolic sys-
tems could have provided a stable habitat within which polymer
replicators later evolved.
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Once beyond the abiogenic synthesis and accumulation of a
variety of complex organic compounds on Earth took place

(1), the conceivable paths toward life’s emergence have been
dominated by two fundamentally different views in origin-of-life
research: the genetics- or replication-first approach (2), and the
metabolism-first scenario (3). Both schools acknowledge that a
critical requirement for primitive evolvable systems (in the
Darwinian sense) is to solve the problems of information storage
and reliable information transmission (4, 5). Disagreement
starts, however, in the way information was first stored. All
present life is based on digitally encoded information in poly-
nucleotide strings, but difficulties with the de novo appearance of
oligonucleotides and clear-cut routes to an RNA world (but see
ref. 6), wherein RNA molecules had the dual role of catalysts
and information storage systems (7, 8), have provided continuous
fuel for objections to the genetics-first scenario (9, 10).
As emphasized by Kauffman (11), metabolism-first theories

suggest that life, in a deep sense, crystallized as a collective self-
reproducingmetabolism in a space of possible organic reactions.A
critical property of such systems must be the capacity for robust
self-maintenance, but problems arise when considering side

reactions that may deplete certain reactants (12) and dynamical
aspects of autocatalytic cycles if they are assumed to coexist in
abstract space (13). Even if we ignore such hurdles, the key
question still remains:Was a network of chemical reactions able to
increase in complexity and eventually undergo Darwinian selec-
tion as assumed by their advocates? A basic condition for any
nascent Darwinian process in a population of self-reproducing
systems is that they must have a sort of hereditary transmission
which requires, in turn, becoming familiar with a lesser-known and
absolutely different form of replication than the well-known
template-dependent replication: ensemble replication of molec-
ular networks (12). So far, the strongest support for such a possible
scenario comes from theoretical work carried out byDoronLancet
and collaborators (14–16). They have proposed the thoughtful
graded autocatalysis replication domain (GARD) model (which
utilizes chemical kinetics to simulate the behavior of mutually
catalytic sets) as an alternative to alphabet-based inheritance. A
basic feature inGARD is that noncovalent, micelle-likemolecular
assemblies capable of growing homeostatically (i.e., buffered
enough as to maintain stability) according to the assembly’s con-
stitution store compositional information that can be propagated
after occasional fission (i.e., assembly splitting).
Here we analyze the putative evolvability of those macro-

molecular aggregates dubbed “ensemble replicators.” The chief
reason for our undertaking is that such compositional genomes
(composomes) apparently fulfill the required conditions as to be
considered units of evolution (17), thus suggesting a pathway from
pre-Darwinian dynamics to aminimal protocell. The remainder of
the paper is organized as follows. First, we provide the back-
ground of the GARD model. Then, we derive an Eigen equation
that allows analyzing the deterministic dynamics of the growth-
splitting process in GARD and investigate the mechanisms
behind the observed quasistationary compositional genomes.
Finally, we describe the results from computer simulations and
discuss the implications of our findings in relation to the genetics-
or metabolism-first scenarios of the origin of life.

Background
The GARD model was originally based on computer simulations
using Gillespie’s algorithm (18, 19) for chemical reactions and
intended to provide a quantitative tool for detailed analyses of
inheritance without information-carrying polymers. It involves
discrete stochastic changes in noncovalent assemblies dictated by
the differential equations
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where ηG is an NG − long vector; NG is the molecular repertoire
of environmentally available prebiotic compounds; ρi is the
external concentration of molecular species i; ki ¼ 10− 2sec− 1

and k− i ¼ 10− 5sec− 1 are uncatalyzed forward and backward
rate constants assumed to be equal for all molecules for sim-
plicity [they differ in their mutual rate enhancement properties
(14)]; NðN <NGÞ is the assembly size given by N ¼ ∑NG

i¼1ni, with
ni indicating the count of molecular species i (i.e., the internal
molecular counts of vector ηG are n1; n2; . . . ; nNGÞ and βij is an
element of the NG ×NG positive matrix that defines the network
of mutually catalytic interactions governed by a statistical for-
malism (see below). Given two compositional assemblies ηG

p and
ηG
q , their degree of similarity is defined as the scalar product

HðηG
p ;η

G
q Þ ¼

ηG
p

jηG
p j
:
ηG
q

jηG
q j
; [2]

wherejηG
p j and jηG

q j are Euclidian norms (H ¼ 1 represents per-
fect similarity, and H ¼ 0 indicates orthogonality). The reason
for assuming N <NG is that information transfer becomes trivial
for large assemblies (15).
At time t, a GARD assembly contains a subrepertoire of

molecular types out of NG, and the time-dependent trajectory of
the composition vector ηGðtÞ is dictated by Eq. 1. At t ¼ ∞
equilibrium sets in, and ηGð∗Þ represents the asymptotic steady-
state solution of Eq. 1 reached by an assembly that forms and
expands indefinitely with unlimited supply of all molecular spe-
cies ni. A nontrivial behavior is obtained when a GARD
assembly goes through a growth-splitting process, somewhat
mimicking the expansion of a growing vesicle that first retains
spherical shape, then is distorted to a dumbbell, and eventually
allocates each molecule to each of two daughter assemblies with
50% probability. Fission is assumed to happen when the size of
the assembly (N) reaches a threshold value; this process keeps
the assemblies out of equilibrium, and quasistationary compo-
sitions (composomes) may arise. Compositional information is
transferred to a daughter assembly only if the elements of the βij
matrix are drawn from a log-normal distribution, rather than a
normal (Gaussian) distribution: In the latter case, there is no
compositional inheritance (15). In contrast to Gaussian dis-
tribution, the log-normal distribution has a longer tail, repre-
senting the higher frequencies of greater mutually catalytic
interactions when plotted in the original scale without taking the
logarithm. The log-normal distribution is an approximation of
the receptor affinity distribution (20, 21) modified for catalytic
rate enhancement (15).

Results and Discussion
An Eigen Equation for the GARD Model. The difficulty in studying the
deterministic dynamics of the motivating growth-splitting process
in the GARD model is that, in principle, one is faced with a vast
array of possible compositions of any size from a repertoire ofNG
environmentally available molecules. Therefore, we have limited
ourselves to a small collection of NG ¼ 10 different molecular
species and considered assemblies of size Nmin ¼ ∑10

i¼1ni ¼ 3 that
were allowed to grow up following Eq. 1 until their size reached
2Nmin, after which they divided exactly into two halves. But we
emphasize that themathematical construction presented here can
in principle deal with assemblies of any size.
GARD assemblies were characterized as 10-long vectors and

distinguished by their initial composition of Nmin ¼ 3 molecules.
An exact solution to the replication-mutation equilibrium dis-

tribution of all possible Ω assemblies (a total of 220 under our
characterization) can be obtained by constructing an Eigen
(4) equation,

X ‘
k ¼ ðrk −EÞXk þ∑Ω

l¼1μklXl; k ¼ 1; 2; . . . ;Ω; [3]

where X ‘
k (with prime for time derivation) is the density of

assembly η10
k ; rk is a self-reproduction term; and μkl is the

mutation rate from η10
l to η10

k (i.e., the fraction of growth-split-
ting processes leading to the kth daughter assembly from
parental l). The rate of exact self-reproduction arises as the sum
of all processes that after growth and splitting give rise to the
same assembly that we started with.
The overall excess productivity

E ¼ ∑k

�
rkXk þ∑lμklXl

�
[4]

is built-in so as to ensure that

∑kXk ¼ 1: [5]

In short, we are explicitly dealing here with compositional space
in which for any assembly η10

k with initial size Nmin ¼ 3 all
accessible daughter assemblies of the same size are calculated.
Death rates were not incorporated and empty assemblies were
avoided by allowing splitting of assemblies into two offspring of
equal size but otherwise random composition (sampling without
replacement). These assumptions do not, however, hamper the
conclusions obtainable by the analysis of the system.
Eqs. 3−5 can be written in matrix form as

X‘ ¼ ðW−EÞX; [6]

where the off-diagonal elements (wkl ¼ μkl; k≠l) of the fitness
matrix W stand for net mutant reproduction, and the diagonal
elements (wkk ¼ rk) are the net growth rates for exact self-
reproduction; and E is a diagonal matrix with specific entries E.
Analytical solutions to Eq. 6 are known (22, 23). A dominant
quasispecies (24) emerges as a positive eigenvector (associated
with the largest eigenvalue) which, in normalized form, gives the
frequency distribution of the stationary population of composi-
tional assemblies meaning coexistence of all types, the only con-
dition being that W is irreducible. This is guaranteed by the fact
that the off-diagonal elements are necessarily greater than zero
in our case because each growing assembly can eventually split
and give rise (mutate) to a different daughter assembly.
A striking feature of the fitness matrix W in Eq. 6 is that many

off-diagonal elements can be as large, or even larger, than the
diagonal elements (Fig. 1). This remarkable pattern is due to the
directions of growth given by the log-normal distribution of
mutually catalytic interactions in the βij matrix and the splitting
process. Let us consider, for instance, compositional assembly 94
in Fig. 1 (i.e., η10

94;), which is here the first in the rank-order
distribution of replication-mutation equilibrium frequencies or,
to follow the standard categorization, the most frequent com-
posome (information on the 10-long vector assemblies ranked
according to equilibrium frequency is shown in SI Section A).
The values that lead to the increase in frequency of this com-
posome tend to be very high through almost all of the range,
something that can be better appreciated in the density plot of
the W matrix shown in the inset plot of Fig. 1. Thus, composi-
tional assemblies η10

116;η10
103; η10

98, and η10
109 whose ranks are, in

order, third, fourth, fifth, and sixth are highly connected to η10
94 by

growth-mutation rates as to provide a large outflow toward the
increasing of the equilibrium frequency of this leading compo-
some (even larger than the self-replication inflow of η10

94!). In
contrast, the second composome in rank η10

20 basically receives
inflow from its relatively high self-replication accuracy, even

Vasas et al. PNAS | January 26, 2010 | vol. 107 | no. 4 | 1471

EV
O
LU

TI
O
N

http://www.pnas.org/cgi/data/0912628107/DCSupplemental/Supplemental_PDF#nameddest=STXT


though it also provides outflow toward other compositional
assemblies such as η10

45, which ranked seventh. The symmetrical
matrix of pairwise similarities Hðη10

p ;η10
q Þ of the first 50 ranked

compositional assemblies indicates that the first 20 in the ranking
have relatively high similarity.
The foregoing analytical approach using Eigen’s equations

helps to explain the crucial dynamical behavior of the GARD
system, which was originally based on a molecular repertoire of
environmentally available prebiotic compounds set to NG ¼ 100:
the emergence of the so-called compositional correlation carpet
that results when plotting the time-correlation matrix of H values
(Eq. 2) between compositional vectors at different points in time
(14). Abrupt mutational transitions from one composome to
another are observed during the time-dependent progression of
a particular assembly undergoing growth-splitting processes.
The quasispecies was originally defined for macromolecular

populations (24), later on extended to quasispecies of compart-
ments with internal competition (i.e., the stochastic corrector
model) (25, 26), and here we face a quasispecies of compositional
assemblies as described by the GARDmodel. A major difference
between the original quasispecies and the composome model
consists of the structure of the matrix W. In the classical,
sequence-based model W ¼ QA, where A is a diagonal matrix of
replication rate parameters and Q is the mutation matrix. In the
case of template-induced replication, Q has a definite structure
imposed by sequence space in the sense that for any mutation rate
p< 1 the one-error mutants are more frequent than the two-error
mutants, and so forth (27). This structure is essential for evolution
and the properties of the quasispecies. Such a structure is missing
in the population of compositional assemblies. We show next that

GARD dynamics is a simple consequence of the hidden com-
partmentalization already present in the NG ×NG matrix that
defines the network of mutually catalytic interactions in Eq. 1.

Hidden Compartmentalization in the βij Matrix. The emergence of
quasistationary states (QSSs) in the GARD model can be easily
understood from the graph-theoretical compartmentalization of
the matrix of mutual rate enhance parameters (SI Section C).
The βij values define the incorporation of molecular speciesMi in
the growing assembly catalyzed by the standing molecular species
Mj, and were drawn from a log-normal distribution (14, 15). It
follows that all βij > 0, which implies that all molecules belong to
the same compartment by definition and this compartment is
expected to act as one system, even if abrupt transitions between
QSSs appear. We found a hidden quasicompartmentalization of
the molecular interactions. The quasicompartments are formed
where the few large βij values fall (Fig. 2; if sampled from a
normal distribution the βij values would be more equal, which
would weaken or nullify such quasicompartmentalization). We
confronted this quasicompartmentalization structure with the
QSSs of the dynamical simulation where three different com-
posomes (A, B, and C) persist (Fig. 3). The molecular compo-
sition of dominant composomes follows the composition of
quasicompartments: Compartments 17 and 11 dominate com-
posomes B and C, and compartment 20 makes up composome A
along with members of two other compartments (Fig. 4). We
conclude that heredity is the result of hidden quasicom-
partmentalization, which in turn is the result of log-normal dis-
tribution of βij values. Dominant composomes frequently turn
into each other and back. This is because composomes always

Fig. 1. Three-dimensional plot of Eigen's fitness matrix W in Eq. 6. GARD
assemblies were characterized as 10-long vectors and distinguished by their
initial composition of Nmin ¼ 3 molecules (η10

k ; k ¼ 1; 2; . . . ; 220). The values
for the forward and backward rate constants as described by Eq. 1 with
NG ¼ 10 were ki ¼ 10− 2sec− 1 and k− i ¼ 0 (i.e., we have neglected decay of
assemblies), respectively. The elements of the βij matrix for the catalytic
enhancement factors were sampled from a log-normal distribution with
parameters μ ¼ − 4 and σ ¼ 4 as in ref. 14. As a legacy, the elements in theW
matrix (wkl ¼ μkl; k≠ l;wkk ¼ rk) have mean 18,157.3 and variance 5:85× 1022,
and some off-diagonal elements can be as large, or even larger, than the
diagonal elements. The inset plot shows the particular distribution for row
94; that is, the values that lead to the increase in frequency of the most
frequent composome η1094 (SI Section A). The highest peaks are in the dis-
tribution range between compositional assemblies η10

116 and η10
120, which

means that the outflow from these compositions to the equilibrium fre-
quency of the leading composome is greater than the bona fide replication
of the leading composome itself.
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Fig. 2. The quasicompartmentalization of the β matrices of molecular
repertoires (A) NG ¼ 10 and (B) NG ¼ 100. Nodes marked with the same color
belong to the same quasicompartment. The widths of links correspond to
the interaction strength. For the large βmatrix (B), only interactions stronger
than 103 are shown for simplicity. Quasicompartments are formed where the
few large βij values from a log-normal distribution fall. The figure was drawn
using NetDraw (42).
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contain members of different compartments, and random split-
ting determines which strongly catalyzing molecules remain in
the composition.
It is critically important to have a clear understanding of the

hidden compartmentalization in the system because it allows
extrapolating what will happen with a larger repertoire of envi-
ronmentally available prebiotic compounds. With NG ¼ 100
molecular species the biggest βij value was 5:9× 104 (link 84–55 in
Fig. 3, point B), but a simple consideration of the sampling prob-
ability of even bigger numbers with increasingNG already suggests
that new dominant catalytic rates will arise; that is, the strongest
links will simply shift toward the highest values without qual-
itatively changing the dynamics of the GARD model as long as
assembly sizeN is kept within the appropriate boundaries given its
dependence with NG for faithful compositional inheritance (15).

(Non-)Darwinian Dynamics of Compositional Assemblies. To study
the putativeDarwinian evolution of compositional assemblies (14,
28), what has to be done is to integrate selection coefficients in the
GARD kinetic model for the catalyzed growth of assemblies (Eq.
1) within the Eigen framework of replication-mutation dynamics
expressed byEq. 6. Themost straightforwardway of doing this is to
multiply the growth rate in theEigen equation of assemblies by fH,
where f > 1 symbolizes the fitness gain and H the degree of sim-
ilarity to the target as defined by Eq. 2. This formalism somewhat
captures what is standard in selection experiments and basically
enhances the corresponding βij parameters.
Two different situations were considered. In the first case, the

frequency of the assembly chosen as the target for selection (i.e.,
η10
124) was at low replication-mutation equilibrium in the back-

ground distribution without imposing selection in the GARD
kinetic model and, therefore, it ranked 196th out of 220 (SI
Section A). In the second case the target for selection was
assembly η10

98, which ranked fifth. In both cases in point the
chosen fitness gain for the target assembly was the same.
For the first scenario, the new dominant eigenvalue (i.e., the

fitness of the quasispecies of compositional assemblies) asso-
ciated with the dominant eigenvector in Eigen’s equations was of
course larger than in the background case, but marginally so: The
ratio between new and background eigenvalues or, in other
words, the relative selective advantage of the new population was
1.00715. The increase in frequency of η10

124 relative to its back-
ground frequency was 20.6%. When all possible assemblies are
considered, some slight relative increases and decreases in their
replication-mutation equilibrium frequencies are detected, but
the effects are so minor that it is hard to think of any evolu-
tionary relevance. This is clearly concluded by analyzing the
ranking changes of the new assemblies as a function of the
similarity H to the target: η10

124 (H ¼ 1) stepped forward only a
few steps when compared to the background ranking and,
therefore, still remained at the tail of the distribution.
The results for the second scenario, where the target is a high-

ranking compositional assembly, were somewhat different. The
new eigenvalue was 1.24071 times the background one. The
relative increase in frequency of η10

98 was 3.6%, but the frequency
of the dominant composome in the background situation (i.e.,
η10
94) also increased due to its dynamical coupling to the target

(see above). Furthermore, the ranking positions of the first 24
compositional assemblies in the background case remained
exactly the same. It seems, therefore, that imposing Darwinian
selection to the GARD model has, at most, negligible effects on
the background distribution defined by the asymptotic steady-
state solution already built-in in the dynamical Eq. 1.
We also carried out stochastic implementations (14) mimick-

ing the preceding analytical scenarios. After integrating selection
coefficients in the GARD model by using two different assem-
blies as the target (i.e., at low or relatively high background
equilibrium frequencies), some minor differences were observed.

These were only statistically significant for the scenario where
the target was a relatively high ranking compositional assembly
(i.e., η10

94). However, the selection effects were minor and quan-
titative rather than qualitative: The ranking positions of the
dominant or most frequent compositional assemblies basically
remained the same in all situations (SI Section B).

Population Dynamics of Compositional Assemblies. A potential
drawback of considering a small repertoire NG ¼ 10 to deter-
ministically studying the dynamics of the growth-splitting process
is that we might have explored a relatively minute range of
evolvable compositional information and, therefore, our former
claim that the GARD model lacks evolvability could be open to
strong criticisms (but see above). Here we generalize the original
GARD model with a larger repertoire of environmentally
available prebiotic compounds to a population of compositions
subjected to Darwinian selection.
We considered a molecular repertoire NG ¼ 100. The problem

now lies in the difficulty of assigning a rank order to all possible
compositions as has been done above, so we have proceeded as
follows. Following Segré et al. (14), the key property of time-
dependent compositional correlation of a GARD system sub-
jected to growth-splitting cycles was statistically investigated. An
initial random vector was allowed to grow from Nmin ¼ 40 to
2Nmin before random splitting, and the process was continued for
2,000 time steps (delay time fromNmin to 2Nmin was 40). From this
point on, we followed the time-dependent change in the con-
centration of each molecular species for an additional number of
16,000 time steps, which was apparently sufficient for convergence
to the late-time stationary distribution (SI Section D). A principal
component analysis (PCA) (29) of the covariance matrix of
molecular concentrations was performed, which allows assessing
the dimensionality and main patterns of the time-dependent
compositional variation. The higher eigenvalues correspond to
compositions that recur in the time-dependent dynamics (the first
5 PCs explain 96.6% of the total variance), whereas eigenvalues
near zero correspond to linear relationships between the com-
positions of the vesicles that are hard to access or are not acces-
sible at all. In other words, the entries in the βij matrix impose
strong constraints to the number of accessible dimensions in
compositional space. A practical consequence is that any com-
position whose eigenvalue is close to 0 cannot be chosen as a

Fig. 3. The time-correlation matrix of H values (Eq. 2) along 54 generations
derived from computer simulations of the GARD model using the β matrix in
Fig. 2B. Only individuals before splitting are included in the analysis. Purple
squares mark QSSs where three different composomes (A, B, and C) persist.
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target for selection because the assembly will simply not move in
that direction. Not necessarily because the system lacks evolv-
ability, but because it represents an absolute constraint.
The putative evolvability of the GARD system was now

studied by comparing the time-dependent dynamics of the basic
kinetic model with the time-dependent dynamics assuming a
target composition. We considered a population of K = 1500
assemblies. In each time step, a randomly chosen assembly from
the whole population is selected for growing proportional to
fitness (i.e., similarity to the target) and the assembly is turned
back to the population whenever its size is less than 2Nmin and
the step ends. If, however, size reaches 2Nmin; then the assembly
is randomly divided into two daughter assemblies. One offspring
replaces the parent assembly and the other a randomly chosen
one from the population. Our protocol is, therefore, based on
the classical Moran (30) process. In this stochastic process, the
total number of assemblies remains constant and given by K, but
the assembly’s size can fluctuate between ≈ Nmin and 2Nmin. The
numerical results can be easily summarized as follows: No matter
what composition is chosen as the target (i.e., from PC1 to PC10;
amounting to 99.7% of the total variance), the characteristic
time-dependent trajectory of a population of molecular assem-
blies is almost identical to the background dynamics defined by
Eq. 1. In all cases the average similarity H (Eq. 2) to the steady-
state solution ηGð∗Þ remained basically unchanged, and the
similarity between any two coexisting assemblies was ∼ 0:46 as an
average and close to the 95% percentile (0.416) of a null dis-
tribution of H values.
The results can be easily understood from our analysis of the

hidden compartmentalization in the βij matrix above. Relatively
small perturbations of some elements will only have minor
consequences in the quasicompartmentalization structure,
although in some circumstances it could be possible to modify
the widths of links corresponding to the interaction strength
between compartments (Fig. 2). In such situations the GARD
system might appear to somewhat respond to “natural selection,”
but flipping among already predefined quasicompartments is a
long way from claiming that the molecular aggregates are
capable of “open-ended” evolution (31). Although dominant
composomes undergo self-replication and mutation-like
changes, their composition is fully dictated by the βij values, and
the many interactions with intermediate strength among poten-
tially dominant composomes ensure a high mutation rate.
Therefore, compositional genomes offer an excellent example of
David Hull’s remark (32): “Replication by itself is sufficient for
evolution of sorts, but not evolution through natural selection.”

Our analysis has been contrasted to mimic well-known theo-
retical and experimental selective scenarios in studies of RNA
evolution (33). There, fitness is assigned so that sequences closer
to the target in Hamming distance or in phenotype space have
higher values than others. For a similar analysis, we decided to
do the same in compositional space. The complication is that in
this space a large part of the fitness is determined by the
underlying structure in a deterministic fashion with very large
potential differences from assembly to assembly. Of course, one
can assume that the whole population is put into a different
environment, which will change by well-known chemical effects
the complete βij matrix and hence the equilibrium frequencies of
assemblies in the population. Note that any chemical network
will react in some way under such a perturbation, which is just
change or nonevolutionary adaptation. Changes in reversible
chemical systems, described by the Le Châtelier-Braun principle
(i.e., if a chemical system at equilibrium experiences a change in
concentration, temperature, volume, or partial pressure, then the
equilibrium shifts to counteract the imposed change), form
important aspects of homeostasis in living systems (this principle
carries over to open systems as well in some form), but should
not be confused by naturally selected hereditary adaptations that
sit on top of these universal (freely given) mechanisms. What we
show is that there is not much room for the latter, while not
denying ample room for the former.

Conclusions
There is always a danger in using terms that acquire implicit
theoretical content as, for example, the term evolution that in
biology is normally used to mean Darwin’s theory of evolution by
natural selection, usually incorporating the contributions of
population genetics. Restricting ourselves to this usage of the
word “evolution,” the computed population dynamics of growing
noncovalent molecular assemblies that undergo splitting when a
critical size is reached clearly illustrates that compositional
assemblies do not evolve. Previous concerns rightly pointed to
their limited hereditary potential (12). By this it was meant that
the number of possible types is smaller than the number of
individuals and, hence, evolution does not discover novelties in
an open-ended manner: All types can be sampled and selected
for or against in finite time (34). Note, however, that open-
endedness is based on the appropriate combinatorial properties
of the generative system in question (for the origin of life it is
chemistry), which does not imply selectability: Large chemical
systems may be open-ended without evolving and, conversely,
systems with limited heredity could potentially evolve without
being open-ended. The population (limited heredity narrative
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unfolds) can revisit previous states randomly or driven by a limit
cycle, depending on parameters such as population size, selective
values, and mutation rates. But we have shown here that even
this tale can hardly be applied to compositional assemblies
simply because terms like “selective values” are devoid of
meaning in this context. The unfortunate usage of words with
clear Darwinian connotations—such as adaptation, fitness
landscape, and coevolution (28, 35, 36)—in the realm of pre-
Darwinian systems cannot be overemphasized.
A relevant problem is what more complicated chemistry could

do to such nonmacromolecular, potentially hereditary systems.
We think that the real question is that of the organization of
chemical networks. If (and what a big IF) there can be in the
same environment distinct, organizationally different, alternative
autocatalytic cycles/networks, as imagined for example by Gánti
(37) and Wächtershäuser (38, 39), then these can also compete
with each other and undergo some Darwinian evolution. But,
even if such systems exist(-ed), they would in all probability have
limited heredity only (cf ref. 34) and thus could not undergo
open-ended evolution. Note that the conditions “distinct,
organizationally different, alternative” have been shown to apply
only to a very limited extent in the GARD model.
We do not know how the transition to digitally encoded

information has happened in the originally inanimate world; that
is, we do not know where the RNA world might have come from,
but there are strong reasons to believe that it had existed.
Template-free systems like composomes could only have had the
limited role of accumulating prebiotic material and increasing
environmental patchiness. One can enlarge by various means the
chemical generativity of GARD-like systems (40) without
cracking the problem of the origin of unlimited heredity. It
should also be said that, although in the ordinary differential
equations, infinite-size populations, both in the GARD as well as
the sequential quasispecies models, naturally settle down to a

unique equilibrium, in realistic scenarios the evolution of
sequences is open-ended as a result of finite population size, the
practically infinite size of sequence space, and the structure of
the fitness landscape (see, e.g., ref. 33).
It is remarkable that in 1971 Eigen discarded the autocatalytic

sets of proteins because they lack inheritance; that is, a mutant
protein introduced by chance (by a production error) cannot be
systematically reproducedwhen it is lost, whereas a polynucleotide
mutant can always be replicated from themutant template (4).We
now feel compelled to abandon compositional inheritance as a
jumping board toward real units of evolution. Hogeweg (41) dis-
tinguishedbetweenattractor-basedand storage-based inheritance,
where the latter category clearly refers to gene-based systems. We
concur that this distinction is crucial in analyzing quasibiological
systems. The essence of nucleic acids from the point of view of
inheritance is exactly that they can store a lot of information at
roughly equal energy/stability levels, exactly the property one
requires from “storage.” Information in attractor-based systems
crucially depends on the limited number of alternative stable
states, as exemplified by our analysis of the GARD model.
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